Kuznetsov, Petersson and Weyl on GL(3), II: The generalized principal series forms

نویسندگان

چکیده

This paper develops the study by analytic methods of generalized principal series Maass forms on GL(3). These occur as an infinite sequence one-parameter families in two-parameter spectrum GL(3) forms, analogous to relationship between holomorphic modular and spherical cusp GL(2). We develop a Kuznetsov trace formula attached these at each weight use it prove arithmetically-weighted Weyl law, demonstrating existence which are not self-dual. Previously, only full level, that were known exist self-dual arising from symmetric-squares GL(2) forms. The developed here should take place Petersson for theorems “in aspect”. As before, construction involves evaluating Archimedian local zeta integral Rankin–Selberg convolution proving form Kontorovich–Lebedev inversion.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Petersson and Kuznetsov Trace Formulas

This article is an introduction to the Petersson trace formula and Kuznetsov trace formula, both of which are now important, standard techniques in analytic number theory. To illustrate their applications to modular forms, we will explain their role in a proof of subconvexity bounds for Rankin-Selberg L-functions L(s, f ⊗ g) on the critical line σ = 1/2, where here and throughout, we write s = ...

متن کامل

On Dirichlet Series and Petersson Products for Siegel Modular Forms

— We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree n and weight k > n/2 has meromorphic continuation to C. Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight k > n/2 may be expressed in terms of the residue at s = k of the associated Dirichlet series....

متن کامل

On Discrete Series Subrepresentations of the Generalized Principal Series

We study a family of the generalized principal series and obtain necessary and sufficient conditions under which the induced representation of studied form contains a discrete series subquotient. Furthermore, we show that if the generalized principal series which belongs to the studied family has a discrete series subquotient, then it has a discrete series subrepresentation.

متن کامل

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

متن کامل

Generalized Douglas-Weyl Finsler Metrics

In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2021

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-020-02117-y